THE ACT OF DISCOVERY*

Jerome S. Bruner

Maimonides, in his *Guide for the Perplexed*, (Maimonides, 1956) speaks of four forms of perfection that man might seek. The first and lowest form is perfection in the acquisition of worldly goods. The great philosopher dismisses such perfection on the ground that the possessions one acquires bear no meaningful relation to the possessor: "A great king may one morning find that there is no difference between him and the lowest person." A second perfection is of the body, its conformation and skills. Its failing is that it does not reflect on what is uniquely human about man: "he could (in any case) not be as strong as a mule." Moral perfection is the third, "the highest degree of excellency in man's character." Of this perfection Maimonides says: "Imagine a person being alone, and having no connection whatever with any other person; all his good moral principles are at rest, they are not required and give man no perfection whatever. These principles are only necessary and useful when man comes in contact with others." "The fourth kind of perfection is the true perfection of man; the possession of the highest intellectual faculties..." In justification of his assertion, this extraordinary Spanish-Judaic philosopher urges: "Examine the first three kinds of perfection; you will find that if you possess them, they are not your property, but the property of others... But the last kind of perfection is exclusively yours; no one else owns any part of it."

It is a conjecture much like that of Maimonides that leads me to examine the act of discovery in man's intellectual life. For if man's intellectual excellence is the most his own among his perfections, it is also the case that the most unique personal of all that he knows is that which he has discovered for himself. What difference does it make, then, that we encourage discovery in the learning of the young? (Does it, as Maimonides would say, create a special and unique relation between knowledge possessed and the possessor? And what may such a unique relation do for a man—or for a child, if you will, for our concern is with the education of the young?)

The immediate occasion for my concern with discovery—and I do not restrict discovery to the act of finding out something that before was unknown to mankind, but rather include all forms of obtaining knowledge for oneself by the use of one's own mind—the immediate occasion is the work of the various new curriculum projects that have grown up in America during the last six or seven years. For whether one speaks to mathematicians or physicists or historians, one encounters repeatedly an expression of faith in the powerful effects that come from permitting the student to put things together for himself, to be his own discoverer.

First, let it be clear what the act of discovery entails. It is rarely, on the frontier of knowledge or elsewhere, that new facts are "discovered" in the sense of being encountered as Newton suggested in the form of islands of truth in an uncharted sea of ignorance. Or if they appear to be discovered in this way, it is almost always thanks to some happy hypotheses about where to navigate. Discovery, like surprise, favors the well prepared mind. In playing bridge, one is surprised by a hand with no honors in it at all and also by hands that are all in one suit. Yet all hands in bridge are equiprobable: one must know to be surprised. So too in discovery. The history of science is studded with examples of men "finding out"

something and not knowing it. I shall operate on the assumption that discovery, whether by a schoolboy going it on his own or by a scientist cultivating the growing edge of his field, is in its essence a matter of rearranging or transforming evidence in such a way that one is enabled to go beyond the evidence so reassembled to additional new insights. It may well be that an additional fact or shred of evidence makes this larger transformation of evidence possible. But it is often not even dependent on new information.

It goes without saying that, left to himself, the child will go about discovering things for himself within limits. It also goes without saying that there are certain forms of child rearing, certain home atmospheres that lead some children to be their own discoverers more than other children. These are both topics of great interest, but I shall not be discussing them. Rather, I should like to confine myself to the consideration of discovery and "finding-out-for-one'self" within an educational setting—specifically the school. Our aim as teachers is to give our student a grasp of a subject as we can, and to make him as autonomous and self-propelled a thinker as we can—one who will go along on his own after formal schooling has ended. I shall return in the end to the question of the kind of classroom and the style of teaching that encourages an attitude of wanting to discover. For purposes of orienting the discussion, however, I would like to make an overly simplified distinction between teaching that takes place in the expository mode and teaching that utilizes the hypothetical mode. In the former, the decisions concerning the mode and pace and style of exposition are principally determined by the teacher as expositor; the student is the listener. If I can put the matter in terms of structural linguistics, the speaker has a quite different set of decisions to make than the listener: the former has a wide choice of alternatives for structuring, he is anticipating paragraph content while the listener is still intent on the words, he is manipulating the content of the material by various transformations, while the listener is quite unaware of these internal manipulations. In the hypothetical mode, the teacher and the student are in a more cooperative position with respect to what in linguistics would be called "speaker's decisions." The student is not a bench-bound listener, but is taking a part in the formulation and at times may play the principal role in it. He will be aware of alternatives and may even have an "as if" attitude toward these and, as he receives information he may evaluate it as it comes. One cannot describe the process in either mode with great precision as to detail, but I think the foregoing may serve to illustrate what is meant.

Consider now what benefit might be derived from the experience of learning through discoveries that one makes for oneself. I should like to discuss these under four headings: (1) The increase in intellectual potency, (2) the shift from extrinsic to intrinsic rewards, (3) learning the heuristics of discovering, and (4) the aid to memory processing.

1. Intellectual potency. If you will permit me, I would like to consider the difference between subjects in a highly constrained psychological experiment involving a two-choice apparatus. In order to win chips, they must depress a key either on the right or the left side of the machine. A pattern of payoff is designed such that, say, they will be paid off on the right side 70 per cent of the time, on the left 30 per cent although this detail is not important. What is important is that the payoff sequence is arranged at random, and there is no pattern. I should like to contrast the behavior of subjects who think that there is some pattern to be found in the sequence—who think that regularities are discoverable—in contrast to subjects who think that things are happening quite by chance. The former group adopts what is called an "event-matching" strategy in which the number of responses given to each side is roughly equal to the proportion of times it pays off; in the present case R70:L30. The group that believes there is no pattern very soon reverts
to a much more primitive strategy wherein all responses are allocated to the side that has the greater payoff. A little arithmetic will show you that the lazy all-and- none strategy pays off more if indeed the environment is random: namely, they win seventy per cent of the time. The event-matching subjects win about 70% on the 70% payoff side (or 49% of the time there) and 30% of the time on the side that pays off 30% of the time (another 9% for a total take-home wage of 58% in return for their labors of decision). But the world is not always or not even frequently random, and if one analyzes carefully what the even-matchers are doing, it turns out that they are trying out hypotheses one after the other, all of them containing a term such that they distribute bets on the two sides with a frequency to match the actual occurrence of events. If it should turn out that there is a pattern to be discovered, their payoff would become 100%. The other group would go on at the middling rate of 70%.

What has this to do with the subject at hand? For the person to search out and find regularities and relationships in his environment, he must be armed with an expectancy that there will be something to find and, once aroused by expectancy, he must devise ways of searching and finding. One of the chief enemies of such expectancy is the assumption that there is nothing one can find in the environment by way of regularity or relationship. In the experiment just cited, subjects often fall into a habitual attitude that there is either nothing to be found or that they can find a pattern by looking. There is an important sequel in behavior to the two attitudes, and to this I should like to turn now.

We have been conducting a series of experimental studies on a group of some seventy school children over the last four years. The studies have led us to distinguish an interesting dimension of cognitive activity that can be described as ranging from episodic empiricism at one end to cumulative constructionism at the other. The two attitudes in the choice experiments just cited are illustrative of the extremes of the dimension. I might mention some other illustrations. One of the experiments employs the game of Twenty Questions. A child--in this case he is between 10 and 12--is told that a car has gone off the road and hit a tree. He is to ask questions that can be answered by "yes" or "no" to discover the cause of the accident. After completing the problem, the same task is given him again, though he is told that the accident had a different cause this time. In all, the procedure is repeated four times. Children enjoy playing the game. They also differ quite markedly in the approach or strategy they bring to the task. There are various elements in the strategies employed. In the first place, one may distinguish clearly between two types of questions asked: the one is designed for locating constraints in the problem, constraints that will eventually give shape to an hypothesis; the other is the hypothesis as question. It is the difference between, "Was there anything wrong with the driver?" and "Was the driver rushing to the doctor's office for an appointment and the car got out of control?" There are children who precede hypotheses with efforts to locate constraint and there are those who, to use our local slang, are "pot-shotters," who string out hypotheses non-cumulatively one after the other. A second element of strategy is its connectivity of information gathering: the extent to which questions asked utilize or ignore or violate information previously obtained. The questions asked by children tend to be organized in cycles, each cycle of questions usually being given over to the pursuit of some particular notion. Both within cycles and between cycles one can discern a marked difference on the connectivity of the child's performance. Needless to say, children who employ constraint location as a technique preliminary to the formulation of hypotheses tend to be far more connected in their harvesting of information. Persistence is another feature of strategy, a characteristic compounded of what appear to be two components: a sheer doggedness component, and a persistence that stems from the sequential organization that a child brings to the task. Doggedness is probably just animal spirits or the need for achievement--what has come to be calle
n-ach. Organized persistence is a maneuver for protecting our fragile cognitive apparatus from overload. The child who has flooded himself with disorganized information from unconnected hypotheses will become discouraged and confused sooner than the child who has shown a certain cunning in his strategy of getting information—a cunning whose principal component is the recognition that the value of information is not simply in getting it but in being able to carry it. The persistence of the organized child stems from his knowledge of how to organize questions in cycles, how to summarize things to himself, and the like.

Episodic empiricism is illustrated by information gathering that is unbound by prior constraints, that lacks connectivity, and that is deficient in organizational persistence. The opposite extreme is illustrated by an approach that is characterized by constraint sensitivity, by connective maneuvers, and by organized persistence. Brute persistence seems to be one of those gifts from the gods that make people more exaggeratedly what they are. (J. S. Bruner et al., 1956)

Before returning to the issue of discovery and its role in the development of thinking, let me say a word more about the ways in which information may get transformed when the problem solver has actively processed it. There is first of all a pragmatic question; what does it take to get information processed into a form best designed to fit some future use? Take an experiment by Zajonc (R. B. Zajonc, 1957) as a case in point. He gives groups of subjects information of a controlled kind, some groups being told that their task is to transmit the information to others, others that it is merely to be kept in mind. In general, he finds more differentiation and organization of the information received with the intention of being transmitted than there is for information received passively. An active set leads to a transformation related to a task to be performed. The risk, to be sure, is in possible overspecialization of information processing that may lead to such a high degree of specific organization that information is lost for general use.

I would urge now in the spirit of an hypothesis that emphasis upon discovery in learning has precisely the effect upon the learner of leading him to be a constructionist, to organize what he is encountering in a manner not only designed to discover regularity and relatedness, but also to avoid the kind of information drift that fails to keep account of the uses to which information might have to be put. It is, if you will, a necessary condition for learning the variety of techniques of problem solving, of transforming information for better use, indeed for learning how to go about the very task of learning. Practice in discovering for oneself teaches one to acquire information in a way that makes that information more readily viable in problem solving. So goes the hypothesis. It is still in need of testing. But it is an hypothesis of such important human implications that we cannot afford not to test it—and testing will have to be in the schools.

2. Intrinsic and extrinsic motives. Much of the problem in leading a child to effective cognitive activity is to free him from the immediate control of environmental rewards and punishments. That is to say, learning that starts in response to the rewards of parental or teacher approval or the avoidance of failure can too readily develop a pattern in which the child is seeking cues as to how to conform to what is expected of him. We know from studies of children who tend to be early overachievers in school that they are likely to be seekers after the "right way to do it" and that their capacity for transforming their learning into viable thought structures tends to be lower than children merely achieving at levels predicted by intelligence tests. Our tests on such children show them to be lower in analytic ability than those who are not conspicuous in overachievement. (J. S. Bruner and A. J. Caron, in press). As we shall see later, they develop rote abilities and depend upon being able to "give back" what is expected rather than to make it into something that relates to the rest of their cognitive life. As Maimonides would say, their learning is not their own.
The hypothesis that I would propose here is that to the degree that one is able to approach learning as a task of discovering something rather than "learning about" it, to that degree will there be a tendency for the child to carry out his learning activities with the autonomy of self-reward or, more properly by reward that is discovery itself.

To those of you familiar with the battles of the last half-century in the field of motivation, the above hypothesis will be recognized as controversial. For the classic view of motivation in learning has been, until very recently, couched in terms of a theory of drives and reinforcement: that learning occurred by virtue of the fact that a response produced by a stimulus was followed by the reduction in a primary drive state. The doctrine is greatly extended by the idea of secondary reinforcement: any state associated even remotely with the reduction of a primary drive could have the effect of producing learning. There has recently appeared a most searching and important criticism of this position, written by Professor Robert White, (R. W. White, 1959) reviewing the evidence of recently published animal studies, of work in the field of psychoanalysis, and of research on the development of cognitive processes in children. Professor White comes to the conclusion, quite rightly I think, that the drive-reduction model of learning runs counter to too many important phenomena of learning and development to be either regarded as general in its applicability or even correct in its general approach. Let me summarize some of his principal conclusions and explore their applicability to the hypothesis stated above.

I now propose that we gather the various kinds of behavior just mentioned, all of which have to do with effective interaction with the environment, under the general heading of competence. According to Webster, competence means fitness or ability, and the suggested synonyms include capability, capacity, efficiency, proficiency, and skill. It is therefore a suitable word to describe such things as grasping and exploring, crawling and walking, attention and perception, language and thinking, manipulating and changing the surroundings, all of which promote an effective—a competent—interaction with the environment. It is true of course, that maturation plays a part in all these developments, but this part is heavily overshadowed by learning in all the more complex accomplishments like speech or skilled manipulation. I shall argue that it is necessary to make competence a motivational concept; there is competence motivation as well as competence in its more familiar sense of achieved capacity. The behavior that leads to the building up of effective grasping, handling, and letting go of objects, to take one example, is not random behavior that is produced by an overflow of energy. It is directed, selective, and persistent, and it continues not because it serves primary drives, which indeed it cannot serve until it is almost perfected, but because it satisfies an intrinsic need to deal with the environment. (R. W. White, 1959).

I am suggesting that there are forms of activity that serve to enlist and develop the competence motive, that serve to make it the driving force behind behavior. I should like to add to White's general premise that the exercise of competence motives has the effect of strengthening the degree to which they gain control over behavior and thereby reduce the effects of extrinsic rewards or drive gratification.

The brilliant Russian psychologist Vigotsky (L. S. Vigotsky, 1934) characterizes the growth of thought processes as starting with a dialogue of speech and gesture between child and parent; autonomous thinking begins at the stage when the child is first able to internalize these conversations and "run them off" himself. This is a typical sequence in the development of competence. So too in instruction. The
narrative of teaching is of the order of the conversation. The next move in the development of competence is the internalization of the narrative and its "rules of generation" so that the child is now capable of running off the narrative on his own. The hypothetical mode in teaching by encouraging the child to participate in "speaker's decisions" speeds this process along. Once internalization has occurred, the child is in a vastly improved position from several obvious points of view—notable that he is able to go beyond the information he has been given to generate additional ideas that can either be checked immediately from experience or can, at least, be used as a basis for formulating reasonable hypotheses. But over and beyond that, the child is now in a position to experience success and failure not as a reward and punishment, but as information. For when the task is his own rather than a matter of matching environmental demands, he becomes his own paymaster in a certain measure. Seeking to gain control over his environment, he can now treat success as indicating that he is on the right track, failure as indicating he is on the wrong one.

In the end, this development has the effect of freeing learning from immediate stimulus control. When learning in the short run leads only to pellets of this or that rather than to mastery in the long run, then behavior can be readily "shaped" by extrinsic rewards. When behavior becomes more long-range and competence-oriented, it comes under the control of more complex cognitive structures, plans and the like, and operates more from the inside out. It is interesting that even Pavlov, whose early account of the learning process was based entirely on a notion of stimulus control of behavior through the conditioning mechanism in which, through contiguity a new conditioned stimulus was substituted for an old unconditioned stimulus by the mechanism of stimulus substitution, that even Pavlov recognized his account as insufficient to deal with higher forms of learning. To supplement the account, he introduced the idea of the "second signalling system," with central importance placed on symbolic systems such as language in mediating and giving shape to mental life. Or as Luria (A. L. Luria, 1959) has put it, "the first signal system (is) concerned with directly perceived stimuli, the second with systems of verbal elaboration." Luria, commenting on the importance of the transition from first to second signal system says: "It would be mistaken to suppose that verbal intercourse with adults merely changes the contents of the child's conscious activity without changing its form... The word has a basic function not only because it indicates a corresponding object in the external world, but also because it abstracts, isolates the necessary signal, generalizes perceived signals and relates them to certain categories; it is this systematization of direct experience that makes the role of the word in the formation of mental processes so exceptionally important." (A. L. Luria, 1959).

It is interesting that the final rejection of the universality of the doctrine of reinforcement in direct conditioning came from some of Pavlov's own students. Ivanov-Smolensky (A. G. Ivanov-Smolensky, 1951) and Krasnogorsky (N. D. Krasnogorsky, 1954) published papers showing the manner in which symbolized linguistic messages could take over the place of the unconditioned stimulus and of the unconditioned response (gratification of hunger) in children. In all instances, they speak of these as replacements of lower, first-system mental or neural processes by higher order or second-system controls. A strange irony, then, that Russian psychology that gave us the notion of the conditioned response and the assumption that higher order activities are built up out of colligations or structurings of such primitive units, rejected this notion while much of American learning psychology has stayed until quite recently within the early Pavlovian fold (see, for example, a recent article by Spence (K. W. Spence, 1959) in the Harvard Educational Review or Skinner's treatment of language (B. F. Skinner, 1957) and the attacks that have been made upon it by linguists such as Chomsky (N. Chomsky, 1957) who have become concerned with the relation of language and cognitive activity). What is the more interesting
is that Russian pedagogical theory has become deeply influenced by this new trend and is now placing much stress upon the importance of building up a more active symbolical approach to problem solving among children.

To sum up the matter of the control of learning, then, I am proposing that the degree to which competence or mastery motives come to control behavior, to that degree the role of reinforcement or "extrinsic pleasure" wanes in shaping behavior. The child comes to manipulate his environment more actively and achieves his gratification from coping with problems. Symbolic modes of representing and transforming the environment arise and the importance of stimulus-response-reward sequences declines. To use the metaphor that David Riesman developed in a quite different context, mental life moves from a state of outer-directedness in which the fortuity of stimuli and reinforcement are crucial to a state of inner-directedness in which the growth and maintenance of mastery become central and dominant.

3. Learning the heuristics of discovery. Lincoln Steffens (L. Steffens, 1931), reflecting in his Autobiography on his undergraduate education at Berkeley, comments that his schooling was overly specialized on learning about the known and that too little attention was given to the task of finding out about what was not known. But how does one train a student in the techniques of discovery? Again I would like to offer some hypotheses. There are many ways of coming to the arts of inquiry. One of them is by careful study of its formalization in logic, statistics, mathematics, and the like. If a person is going to pursue inquiry as a way of life, particularly in the sciences, certainly such study is essential. Yet, whoever has taught kindergarten and the early primary grades or has had graduate students working with him on their theses--I choose the two extremes for they are both periods of intense inquiry--knows that an understanding of the formal aspect of inquiry is not sufficient. There appear to be, rather, a series of activities and attitudes, some directly related to a particular subject and some of them fairly generalized, that go with inquiry and research. These have to do with the process of trying to find out something and while they provide no guarantee that the product will be any great discovery, their absence is likely to lead to awkwardness or aridity of confusion. How difficult it is to describe these matters--the heuristics of inquiry. There is one set of attitudes or ways of doing that has to do with sensing the relevance of variables--how to avoid getting stuck with edge effects and getting instead to the big sources of variance. Partly this gift comes from intuitive familiarity with a range of phenomena, sheer "knowing the stuff." But it also comes out of a sense of what things among an ensemble of things "smell right" in the sense of being of the right order of magnitude or scope or severity.

Then English philosopher Weldon describes problem solving in an interesting and picturesque way. He distinguishes between difficulties, puzzles, and problems. We solve a problem or make a discovery when we impose a puzzle form on to a difficulty that converts it into a problem that can be solved in such a way that it gets us where we want to be. That is to say, we recast the difficulty into a form that we know how to work with, then work it. Much of what we speak of as discovery consists of knowing how to impose what kind of form on various kinds of difficulties. A small part but a crucial part of discovery of the highest order is to invent and develop models or "puzzle forms" that can be imposed on difficulties with good effect. It is in this area that the truly powerful mind shines. But it is interesting to what degree perfectly ordinary people can, given the benefit of instruction, construct quite interesting and what, a century ago, would have been considered greatly original models.

Now to the hypothesis. It is my hunch that it is only through the exercise of problem solving and the effort of discovery that one learns the working heuristic of discovery, and the more one has practice, the more likely is one to generalize
what one has learned into a style of problem solving or inquiry that serves for any kind of task one may encounter--or almost any kind of task. I think the matter is self-evident, but what is unclear is what kinds of training and teaching produce the best effects. How do we teach a child to, say, cut his losses but at the same time be persistent in trying out an idea; to risk forming an early hunch without at the same time formulating one so early and with so little evidence as to be stuck with it waiting for appropriate evidence to materialize; to pose good testable guesses that are neither too brittle nor too sinuously incorrigible; etc., etc. Practice in inquiry, in trying to figure out things for oneself is indeed what is needed, but in what form? Of only one thing I am convinced. I have never seen anybody improve in the art and technique of inquiry by any means other than engaging in inquiry.

4. Conservation of memory. I should like to take what some psychologists might consider a rather drastic view of the memory process. It is a view that in large measure derives from the work of my colleague, Professor George Miller, (G. A. Miller, 1956). Its first premise is that the principal problem of human memory is not storage, but retrieval. In spite of the biological unlikelihood of it, we seem to be able to store a huge quantity of information--perhaps not a full tape recording, though at times it seems we even do that, but a great sufficiency of impressions. We may infer this from the fact that recognition (i.e. recall with the aid of maximum prompts) is so extraordinarily good in human beings--particularly in comparison with spontaneous recall where, so to speak, we must get out stored information without external aids or prompts. The key to retrieval is organization or, in even simpler terms, knowing where to find information and how to get there.

Let me illustrate the point with a simple experiment. We present pairs of words to twelve-year-old children. One group is simply told to remember the pairs, that they will be asked to repeat them later. Another is told to remember them by producing a word or idea that will tie the pair together in a way that will make sense to them. A third group is given the mediators used by the second group when presented with the pairs to aid them in tying the pairs into working units. The word pairs include such juxtapositions as "chair-forest," "sidewalk-square," and the like. One can distinguish three styles of mediators and children can be scaled in terms of their relative preference for each: generic mediation in which a pair is tied together by a superordinate idea; "chair and forest are both made of wood"; thematic mediation in which the two terms are imbedded in a theme or little story: "the lost child sat on a chair in the middle of the forest"; and part-whole mediation where "chairs are made from trees in the forest" is typical. Now, the chief result, as you would all predict, is that children who provide their own mediators do best--indeed, one time through a set of thirty pairs, they recover up to 95% of the second words when presented with the first ones of the pairs, whereas the uninstructed children reach a maximum of less than 50% recovered. Interestingly enough, children do best in recovering materials tied together by the form of mediator they most often use.

One can cite a myriad of findings to indicate that any organization of information that reduces the aggregate complexity of material by imbedding it into a cognitive structure a person has constructed will make that material more accessible for retrieval. In short, we may say that the process of memory, looked at from the retrieval side, is also a process of problem solving: how can material be "placed" in memory so that it can be got on demand?

We can take as a point of departure the example of the children who developed their own technique for relating the members of each word pair. You will recall that they did better than the children who were given by exposition the mediators they had developed. Let me suggest that in general, material that is organized in
terms of a person's own interests and cognitive structures is material that has the best chance of being accessible in memory. That is to say, it is more likely to be placed along routes that are connected to one's own ways of intellectual travel.

In sum, the very attitudes and activities that characterize "figuring out" or "discovering" things for oneself also seem to have the effect of making material more readily accessible in memory.